
Turing Mesh Shaders
Viktor Zoutman (viktor@vzout.com)

3 February 2020

Abstract
In 2018 NVIDIA Released their GPU architecture,
called Turing.1 Its main feature is ray-tracing2 but
Turing also introduces several other developmens that
look very intereresting on their own. One of these de-
velopements is the concept of mesh shaders. But what
are mesh shaders and how can we improve use them
to improve your renderer? I will also be investigating
which different optimization techniques within mesh
shading have the biggest impact on performance.

1 Introduction
Over time the graphics pipeline has gotten more and
more complicated. While some parts of the current
graphics pipeline are flexible (geometry shaders, tessel-
lation), they are not performant and where the graphics
pipeline is performant it is often not flexible (instanc-
ing).

Figure 1: Standard vs Mesh Shading Pipeline3

Mesh shaders aim to simplify the graphics pipeline by
removing the input assembler, replacing the tesselator
with a mesh generator, substituting the vertex shader
and tessellation control shader with a (optional) task
shader (Called amplification shader in DirectX 12) and
the tessellation evaluation shader and geometry shader
with a mesh shader. This simplification has the effect
of introducing opportunity for higher scalability and
bandwidth-reduction.

These changes allow rendering engineers to satisfy the
need for the high poly count and high number of objects
in modern video games and graphics software like CAD.

1.1 The Mesh Shader
The mesh shader (and task shader) are basically com-
pute shaders. A mesh shader begins its work by dis-
patching a set of thread groups, each of which process

a subset of the larger mesh. Similar to compute each
thread has access to groupshared memory. The output
vertices and primitives however do not have to corre-
late to a specific thread in the group. As long as all
vertices and primitives used in the thread group are
processed, resources can be allocated in whichever way
is most efficient. The user is also capable of specifying
per-vertex and per-primitive attributes, which allows
for faster and space efficient rendering.

There are currently two implementations of mesh
shaders. One in the DirectX12 API4 and extensions for
both OpenGL5,6 and Vulkan6,7. There are a couple of
differences between these. Vulkan and OpenGL only
allow 1 dimensional thread groups. DirectX however
allows for 3 dimensional thread groups. DirectX also
has the ability to dynamically specify the number of
output vertices dynamically unlike Vulkan which only
allows you to specify that value statically.

Figure 2: Meshlets Visualized

The aforementioned submeshes processed by thread
groups are called meshlets. The idea is that the pro-
grammer algorithmically splits the mesh in x amount
of meshlets with a vertex count of 32 to around 200,
depending on the number of attributes. It is most
efficient to generate meshlets with as many as possi-
ble vertices that allow re-use. These meshlets should
be pre-computed. This is a big benefit over the old
Input Assembler which has to identify vertex re-use
dynamically. In section 2 I go over how to efficiently
pre-compute meshlets.

1.2 The Task Shader
An optional expansion in the mesh shader pipeline is
the task shader (amplification shader). While the mesh
shader is a flexible tool, it does not allow for tessellation
or efficient culling of entire meshlets.

The most basic use of a task shader is basically executing
mesh shaders. We can determine for example whether

1



a meshlet is visible and conditionally execute the mesh
shader that is supposed to process the meshlet. Task
shaders are capable of sharing data with its child mesh
shaders and also the children have access to the parents
group shared memory. To give a practical example of
mesh shaders, they allow you to add more triangles to
the meshlet for displacement mapping since you can
exceed the limited vertex count per mesh shader by
executing two mesh shaders instead.

1.3 Executing Mesh & Task Shaders
Both Vulkan and DirectX 12 allow you to either
execute mesh shaders directly or using execute in-
direct[dx:indirectdrawing]. Vulkan has the function
CmdDrawMeshTasksNV7 with the parameters uint32_t
taskCount and uint32_t firstTask. firstTask al-
lows you to specify what mesh shader to execute first.
Lets say you have a task shader and a mesh shader but
they are placed in the pipeline in the order of mesh
shader, task shader but you still want to execute the
task shader first. In this case you can set firstTask to
1 and it will execute the task shader first followed my
the mesh shader. The other parameter - taskCount -
is a bit misleading. It is actually the amount of thread
groups in the x dimension you want to execute on the
first task shader.

DirectX 12 is a bit more straight forward with
its DispatchMesh4 function. It has three param-
eters defining a 3 dimensional thread group size.
Each thread group size component must be less
than 64k and the product of ThreadGroupCountX ×
ThreadGroupCountY × ThreadGroupCountZ must
not exeed 222

In Vulkan to calculate the numTasks parameter I use
the following formula: numTasks = (N + S − 1)/S
where N is the number of meshlets multiplied by the
number of instances and S is the size of the thread
group. DirectX is a bit more complicated since you
could optimize the mesh shader in different ways using
the 2 extra dimensions. For example every instance of
a meshlet could be a index in the y dimension.

Moving on, you don’t need to bind a vertex buffer the
traditional way anymore. Instead you are required to
create a descriptor to your buffers and use that to read
from the buffer directly in the mesh shader. You could
just bind the vertex buffer and index buffer directly
without modifying the contents of it but this is not the
most efficient approach. For these optimizations see
section 2.

2 Generating Meshlets
To be able to render meshlets you need to know what
to render. During model loading we can generate these
meshlets. First of all we want to have vertices and
indices we can process in the mesh shader. In section 1.1
I mentioned we want to optimize the re-use of vertices,
so every meshlet should have the highest number of

re-use possible. We can build the vertex buffer using
the following algorithm:

1. Take the first triangle that hasn’t already been
added to a meshlet.

2. Loop over all triangles left in the mesh.
• Find as many duplicate vertices as possible

and add their parent triangle to the meshlet
(without exceeding the maximum amount of
vertices).

• If there are no duplicates left add any triangle
that hasn’t been added to a meshlet until the
maximum amount of vertices is reached.

Keep in mind that theoretically it is possible to have
a vertex re-used more often than the maximum vertex
count of a meshlet. Also note that you can’t share a
single triangle over multiple meshlets.

While assigning vertices to meshlets you can also create
the index buffer of the meshlets. Indices can be stored
like normal by ranging the indices from 0 to the number
of vertices. Or you can flatten the index buffer and in
the mesh shader append a “vertex start” variable to
the index. The latter allows us to have a 32 bit index
buffer where we store 4 indices in 1 value and write
with one operation 4 indices to the output of the mesh
shader (writePackedPrimitiveIndices4x8NV6).

3 Rendering Meshlets
In this paper I will only be considering one
dimensional thread group sizes. You might
be able to do some additional optimization
using DirectX 12. Due to the fact that mesh
shading has only recently been added to the
API there was no time to try this out.

The first thing needed to be able to render meshlets is
to decide on the thread group size. I found that using
all the threads available in the warp (wavefront) was
most efficient (32 in the case of my graphics card).

To generate our primitives in the mesh shader we re-
quire some data. For now we only need the number of
vertices in the meshlet, the number of primitives in the
meshlet, the offset of the meshlet in the vertex buffer
and the offset of the meshlet in the index buffer. In
my implementation I store the counts in 8 bits and the
offsets in 20 bits. This data is our meshlet descriptor.
Since we require to read these descriptors from the
GPU I try to be bandwidth aware and keep the size of
the descriptor down as much as possible. On the GPU
we can index into a meshlet descriptor buffer using
the following formula: meshlet_id = base_id where
base_id = work_group_id1 × work_group_id2 ×
work_group_id3

In the mesh shader you would want to have two loops.
One parsing the indices and one parsing the vertices.
You could do this in the same loop. But since we
likely have duplicate vertices we don’t want to parse
vertices twice or introduce branching. To get the

2



most out of our hardware we need to split the work
over the thread group. We can calculate the num-
ber of itterations for the loops respectively with the
following two formulas: prim_count/group_size and
vert_count/group_size. To allow the shader compiler
to compute this during compilation we can use the
maximum primitive and vertex count instead of the ac-
tual values. This has the additional benefit of reduced
branching.

Parsing the vertices should be relatively straight for-
ward. Output the vertex position (multiplied by the
MVP if required) and output the other attributes of
the vertex (normals, tangents, etc).

Parsing indices is even simpler but instead of just
outputting the indices directly we can optimize
it by writing 4 or 8 indices in the same loop
iteration. If you want to make use of this opti-
mization the formula used to calculate the number
of loop iterations becomes prim_iterations =
prim_count/group_size × indices_per_iteration.
You can write 4 indices at the same time by using
writePackedPrimitiveIndices4x8NV in GLSL. HLSL
however does not have such function.

When parsing a meshlet it is important to understand
that it doesn’t matter what vertices and indices you
are parsing per thread. If you parse x index you don’t
require its corresponding vertex in the same thread.
This allows us to parse vertices and indices in any
order.

In the vertex and index parsing loops which iterate
i from 0 to num iterations (see section 3) we can
calculate the index using the following formula: idx =
local_invocation_id_1 + i ∗ group_size. Meaning we
loop over a subset of indices and vertices per lane so
we don’t parse indices or vertices multiple times within
the same thread group.

4 Instancing
Instancing is a bit more difficult compared to the old
vertex pipeline. I have 2 solutions for this problem.
One is uses Execute Indirect while the other does the
instancing using mesh shaders only. Both techniques
still require you to bind a big buffer with all the per-
instance data just like with the standard pipeline.

4.1 Instancing Using Execute Indirect
This is a rather simple approach. The mesh shader API
provides us with vkCmdDrawMeshTasksIndirectNV and
works similar to normal indirect execution. And instead
of calculating the instance id ourselves we can use the
ARB_shader_draw_parameters8 extension which pro-
vides us with gl_DrawIDARB8 which we can functionally
use as the instance id.

I believe this technique to be the fastest. While I
haven’t benchmarked it myself the inherit performance
gain from moving CPU work to the GPU provided by

indirect execution still remains and it simplifies the
instancing code significantly.

4.2 Instancing Using Only Mesh
We need to calculate gl_InstanceID ourselves and in-
stead of increasing the num instances parameter of
the old vkCmdDrawIndexed / vkCmdDraw commands we
need to multiple the number of meshlets per mesh by
the number of instances.

To compute the instance id we can use the following for-
mula: inst_id = (base_id+ lane_id)/num_meshlets.
Note that we require the number of meshlets of the
mesh here. We will need to adjust the meshlet
id calculation as well: meshlet_id = meshlet_id
(mod num_meshlets)

5 Culling
Culling is one of the biggest strengths of mesh shaders.
There are two high level types of culling you can do:
per-triangle culling from within your mesh shaders or
meshlet culling from within task shaders. While per-
triangle culling was a already possible with the standard
pipeline, meshlet culling is something new and very
powerful. It will allow you to discard entire batches of
vertices before even parsing them which is something
the input assembler was incapable of doing efficiently.

5.1 Meshlet Culling
Task shaders work pretty much exactly the same as
mesh shaders. But instead of building meshes we exe-
cute mesh shaders. We can specify the amount of mesh
shaders we want to execute using gl_TaskCountNV or
DispatchMesh. Data can be send down to mesh shaders
using the taskNV out or the DispatchMesh’s payload.

When using task shaders we can no longer calcu-
late the meshlet id using the base id of the mesh
shader since it won’t match the base id of the task
shader. To fix this we can pass an array of task
shader lane ids (lane_id = local_invocation_id1 ×
localinvocation_id2× local_invocation_id3) down to
the mesh shader which we can use from within the mesh
shader as a lane id by indexing into the array using
the work group id and changing the formula to the
following: base_id + task_lane_id

We can determine the number of mesh shaders tasks
during initialization on the CPU but since we want to
cull meshlets we want to calculate this value at runtime.
First off lets make sure we don’t execute more mesh
shaders than we have meshlets. We can do this by
checking whether the meshlet id equals or exceeds the
max number of meshlets.

Listing 1 Conditional rendering using task shaders
bool render = !(global_id > total_meshlet_count);
uvec4 vote = subgroupBallot(render);
uint num_tasks = subgroupBallotBitCount(vote);

3



In listing 1 I use wave intrinsics9 (subgroups10,11) to
compute the number of meshlet tasks we need. I do
this instead of a atomicAdd because I can repurpose
the vote variable when passing the lane id down to the
meshlet to calculate the meshlet id when using task
shaders. As aforementioned in the preamble of section 5,
we need to pass down the lane id of the task shader.
Now since we are no longer rendering all meshlets I
can’t guarantee the array of lane ids is sequential. To
fix this we can calculate a offset int the array ourselfs
by getting the exclusive bit count of vote as seen in
listing 2.

Listing 2 Passing the lane id to the mesh shaders
uint offset = subgroupBallotExclusiveBitCount(vote);
if (render)

OUT.sub_ids[offset] = lane_id;

5.1.1 Frustum Culling

For per-meshlet frustum culling we require a bit more
information of our meshlets. We will need a bounding
box for every meshlet. If we calculate the bounding
box relative to the bounding box of the entire mesh we
can store it in 6, 8 bit unsigned integerers: 3 minimum
and 3 maximum corners. We will also need to access
the mesh bounding box and the model view projection
matrix.

Truncating the meshlets bounding box to the mesh
bounding box can be easily done by subtracting, then
dividing the meshlets bounding box corners by the
bounding box of the mesh. To fit the bounding box
within 6, 8 bit unsigned integers we want to snap the
bounding box to a 8 bit grid. This can be done with
listing 3.

Listing 3 Snap bounding box to 8 bit grid
bb_uint8_min.x =

clamp(int(truncf(bb_min.x * 255.f)), 0, 255.f - 1);
// Same for the y and z components
bb_uint8_max.x =

clamp(int(ceilf(bb_max.x * 255.f)), 0, 255.f);
// Same for the y and z components

To actually cull meshlets using this data we want to
see if any of the 8 corners of the bounding box are
inside of our field of vision. If any of the corners is not
visible we render the meshlet. We need to compute all
8 corners from the 6 bounding box values we have and
multiply them by the model view projection matrix.
The resulting values can be used to determine whether
the corners are within our view by checking the screen
position as seen in listing 4.

If all corners are outside our view the final value of
bits will be 0, meaning if this is not the case we need
to render the meshlet.

5.1.2 Backface Culling

Per-meshlet backface culling is slightly more compli-
cated since we need to compute an area in the form

Listing 4 Determine whether a screen position is on
screen

bits |= hPos.x < -hPos.w ? 1 : 0;
bits |= hPos.x > hPos.w ? 2 : 0;
bits |= hPos.y < -hPos.w ? 4 : 0;
bits |= hPos.y > hPos.w ? 8 : 0;
bits |= hPos.z < 0 ? 16 : 0;
bits |= hPos.z > hPos.w ? 32 : 0;
bits |= hPos.w <= 0 ? 64 : 0;

of a cone (with ∞ length) which can tell us in what
area only the meshlets backface is visible. We can pre-
compute this cone on the CPU. We can compress the
angle into 1, 8 bit values. The normal of the cone can be
compressed into 2, 8 bit values using a 16 bit unit vector
compression algorithm. See the paper “A Survey of Ef-
ficient Representations for Independent Unit Vectors”12

which lists unit vector compression techniques and also
contains reference implementations and benchmarks.

Finding the cone’s normal is done by getting the average
of all vertex normals of the meshlet. The angle can be
computed by finding the smallest angle between the
average normal and all triangle normals.

5.1.3 Subpixel Culling

Subpixel culling is a technique where you cull elements
of a scene that are so small on the screen that if you cull
them it makes a minimal difference in image quality.
Generally this technique is mainly used for triangles
but we can also apply this to entire meshlets.

For subpixel culling a extra bit of data is required, the
viewport. We can use the viewport to obtain the min-
imum and maximum pixel size of the corners of the
meshlet bounding box. It is recommended to apply
some safety around the bounding box to take into ac-
count fixed point rasterization. The aggressiveness of
culling can be increased by multiplying the viewport by
a value in the range of 0− 1 where 1 is no culling and
0 will cull everything. The actual cull test can then be
done by rounding the pixel min and max and checking
whether the x component of the x or y component are
the same. If one of them are the same we want to render
the pixel.

5.2 Per-Triangle Culling
For culling triangles I recommend keeping your ver-
tex and index loops as they are. We can re-use
gl_PrimitiveIndicesNV and gl_MeshVerticesNV to
conditionally render triangles.

To test a triangle we need to make sure all vertices
are parsed by all threads in the thread group since we
can’t guarantee that a thread’s indices point to the same
vertices the thread parsed. To do this we need to place a
memory barrier (GroupMemoryBarrierWithGroupSync
or memoryBarrierShared).

Now to test triangles to determine whether want to
render them we need to loop over all the primitives

4



again. You can copy the indices loop code for this.
Than you can retrieve the indices of the triangle from
gl_PrimitiveIndicesNV and the vertex positions from
gl_MeshVerticesNV::gl_Position.

The actual algorithm to determine visibility of a triangle
are out of the scope of this paper. These techniques are
very well documented with many code examples online
and unlike meshlet culling they are no different from
there traditional counterparts. I recommend looking
into back-face culling13, frustum culling14 and subpixel
culling.

After you have determined whether a triangle should be
rendered we need to somehow mark it to be rendered.
We can easily increment the gl_PrimitiveCountNV
variable so we only render the correct amount of trian-
gles but if there is a triangle that doesn’t need to be
rendered in the middle of the build-in index array we
want to make sure we skip that one. To accomplish
this we can re-structure the output index buffer. To do
this we need to make sure we are not overwriting the
indices of other threads. Here wave intrinsics comes in
handy again (listing 5).

Listing 5 Reordering the indices based on whether a
triangle should be rendered
// calculate the
uvec4 vote = subgroupBallot(render);
uint tris = subgroupBallotBitCount(vote);
uint idx_offset =

prim_count + subgroupBallotExclusiveBitCount(vote);

// re-order indices array
if (render)
{

uint idx = idx_offset * 3;
gl_PrimitiveIndicesNV[idx + 0] = idx_a;
gl_PrimitiveIndicesNV[idx + 1] = idx_b;
gl_PrimitiveIndicesNV[idx + 2] = idx_c;

}

prim_count += tris;

6 Tessellation
Tessellation is a feature that becomes much easier to
implement and optimize with mesh shaders. To simplify,
you can look at the task shader in this case as the control
shader from the old tessellation pipeline. But unlike
the old pipeline it uses a cooperative thread model
and instead of having to take a patch as input and
tessellation decisions as output, its input and output
are user defined.

Mesh shaders have a limited amount of vertices we can
produce and since we are subdividing triangles for tes-
sellation we will need to subdivide meshlets into smaller
meshlets from our task shader (or pre-computed). Lets
say we want to divide every triangle of a meshlet once.
This means we need to divide the meshlet into 3 smaller
meshlets (Every triangle subdivision will introduce 3 ex-
tra vertices using a standard non-smoothing subdivision
algorithm).

The task shader could be extended to subdivide only
triangles or meshlets with a specific material. This can
be relatively easily implemented by re-purposing a bit of
the meshlet id or extending the indices buffer to contain
a boolean telling you whether to subdivide or not. The
latter however does increase bandwidth and the former
reduces precision of some meshlet information.

The actual subdivision should happen in the mesh
shader since the vertices and indices are already be-
ing parsed here and since you also want to displace the
newly generated triangles you also want to be reading
from attribute buffers to displace the vertices the right
amount and into the right direction.

The technique I propose in this paragraph is one of
many of possible solutions to tessellation. The biggest
strength in mesh shading lies in its flexibility. For exam-
ple you are now able to implement custom tessellation
patterns.

Tessellation does introduce problems when combining it
with meshlet culling. You can’t efficiently cull anymore
if you don’t know how the vertices will be displaced. I
recommend expanding the bounding box of the meshlet
in all directions by the highest amount of displacement
provided provided by a displacement map, material
property or a engine-wide limitation.

7 Raytracing
Mesh shaders and the raytracing API’s acceleration
structures don’t easily communicate with each other but
it might be possible by streaming data to intersection
shaders. This could be usefull in the form of tessellation
and animation for example. I haven’t tried this myself
yet and needs further investigation. Of course you
will see a performance benefit if the raytracer takes
a hybrid approach where the gbuffers are filled using
mesh shaders.

7.1 Performance

Figure 3: Scene A - 1 Object(s), 1.8m Triangles, 905.9k
Vertices

Standard Pipeline Mesh Shading Pipeline
0.26 0.36

Hardware: RTX 2080 TI

5



Figure 4: Scene B - 2,100 Object(s), 7.4m Triangles,
3.2m Vertices

NOTE: Benchmarks will be done later. Cur-
rently I don’t have access to the hardware.

8 Conclusion

Mesh shading is not a magic bullet that will automat-
ically make your rendering faster. It takes a lot of
time to implement and optimize. And if you end up
without any culling or instancing you will see a trivial
performance difference. Mesh shading becomes really
interesting when you implement meshlet culling and
triangle culling (especially meshlet frustum culling has
a great impact in performance) and or optimize your
shaders for specific scenarios. Another area where mesh
shading excels is high poly count meshes. Being able to
blackface cull entire subsets of a mesh is very beneficial
for performance. No matter what your implementation
looks like you will always see a increase in memory
usage due to the need to pre-compute meshlets and
their descriptors. This technology is still in its infancy
and moving forward we will lively see new techniques
and applications for mesh shading.

9 Further Work

There are undoubtedly many more optimizations and
techniques yet to be discovered. Some subjects that
require research but not limited to are:

• Using wave intrinsics to share vertex and index
data between instances.

• The tessellation technique covered in this paper
is very simplistic and only covers the basics. I
believe there are many different opportunities for
optimization in this area previously impossible.

• Benchmark how the SetMeshOutputCounts’s ver-
tex count affects performance compared to
Vulkan’s approach.

• Update the implementation using Vulkan 1.2’s
GPU buffer pointers.

• Dynamic Level of Detail approaches.
• Procedural geometry.

References
1. NVIDIA Corporation. Turing architecture. https:
//www.nvidia.com/en-us/design-visualizatio
n/technologies/turing-architecture/, (2018).

2. NVIDIA Corporation. Raytracing. https://deve
loper.nvidia.com/rtx/raytracing, (2018).

3. NVIDIA Corperation. Introduction to turing mesh
shaders. https://devblogs.nvidia.com/introducti
on-turing-mesh-shaders/, (2019).

4. Microsoft Corporation. DirectX-spec - mesh shader.
https://microsoft.github.io/DirectX-Specs/d3
d/MeshShader.html, (2019).

5. NVIDIA Corporation. https://github.com/Khr
onosGroup/GLSL/blob/master/extensions/nv
/GLSL_NV_mesh_shader.txt, (2019).

6. NVIDIA Corporation. https://www.khronos.or
g/registry/OpenGL/extensions/NV/NV_mes
h_shader.txt, (2019).

7. NVIDIA Corporation. https://www.khronos.or
g/registry/vulkan/specs/1.1-extensions/html/
vkspec.html#VK_NV_mesh_shader, (2019).

8. Khronos. https://www.khronos.org/registry
/OpenGL/extensions/ARB/ARB_shader_dra
w_parameters.txt, (2019).

9. Microsoft Corporation. Wave intrinsics. https:
//github.com/Microsoft/DirectXShaderComp
iler/wiki/Wave-Intrinsics, (2018).

10. Ubisoft Montreal. Vulkan subgroup explained.
https://www.khronos.org/assets/uploads/dev
elopers/library/2018-vulkan-devday/06-subgro
ups.pdf , (2018).

11. Khronos. Vulkan subgroup tutorial. https://ww
w.khronos.org/blog/vulkan-subgroup-tutorial,
(2018).

12. Williams College. A survey of efficient representa-
tions for independent unit vectors. http://jcgt.org
/published/0003/02/01/paper.pdf , (2014).

13. Wikipedia contributors. Back-face culling —
Wikipedia, the free encyclopedia. (2017).

14. RasterTek. Frustum culling. http://www.raster
tek.com/dx11tut16.html, (2008).

6

https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://developer.nvidia.com/rtx/raytracing
https://developer.nvidia.com/rtx/raytracing
https://devblogs.nvidia.com/introduction-turing-mesh-shaders/
https://devblogs.nvidia.com/introduction-turing-mesh-shaders/
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://microsoft.github.io/DirectX-Specs/d3d/MeshShader.html
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_mesh_shader.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_mesh_shader.txt
https://github.com/KhronosGroup/GLSL/blob/master/extensions/nv/GLSL_NV_mesh_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_mesh_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_mesh_shader.txt
https://www.khronos.org/registry/OpenGL/extensions/NV/NV_mesh_shader.txt
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_NV_mesh_shader
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_NV_mesh_shader
https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/vkspec.html#VK_NV_mesh_shader
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_draw_parameters.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_draw_parameters.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_shader_draw_parameters.txt
https://github.com/Microsoft/DirectXShaderCompiler/wiki/Wave-Intrinsics
https://github.com/Microsoft/DirectXShaderCompiler/wiki/Wave-Intrinsics
https://github.com/Microsoft/DirectXShaderCompiler/wiki/Wave-Intrinsics
https://www.khronos.org/assets/uploads/developers/library/2018-vulkan-devday/06-subgroups.pdf
https://www.khronos.org/assets/uploads/developers/library/2018-vulkan-devday/06-subgroups.pdf
https://www.khronos.org/assets/uploads/developers/library/2018-vulkan-devday/06-subgroups.pdf
https://www.khronos.org/blog/vulkan-subgroup-tutorial
https://www.khronos.org/blog/vulkan-subgroup-tutorial
http://jcgt.org/published/0003/02/01/paper.pdf
http://jcgt.org/published/0003/02/01/paper.pdf
http://www.rastertek.com/dx11tut16.html
http://www.rastertek.com/dx11tut16.html

	Introduction
	The Mesh Shader
	The Task Shader
	Executing Mesh & Task Shaders

	Generating Meshlets
	Rendering Meshlets
	Instancing
	Instancing Using Execute Indirect
	Instancing Using Only Mesh

	Culling
	Meshlet Culling
	Frustum Culling
	Backface Culling
	Subpixel Culling

	Per-Triangle Culling

	Tessellation
	Raytracing
	Performance

	Conclusion
	Further Work
	References

